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Abstract 

Predicting upcoming events using past observations is a crucial component of an 

efficient allocation of attentional resources. Therefore, the deployment of attention is sensitive 

to different types of cues predicting upcoming events. Here we investigated probabilistic 

inference abilities in spatial and feature-based attentional, as well as in motor-intentional 

subsystems, focusing specifically on the age-related changes in these abilities. In two 

behavioral experiments, younger and older adults (20 younger and 20 older adults for each 

experiment) performed three versions of a cueing paradigm, where spatial, feature, or motor 

cues predicted the location, color, or motor response of a target stimulus. The percentage of 

cue validity (i.e., the probability of the cue being valid) changed over time, thereby creating a 

volatile environment. A Bayesian hierarchical model was used to estimate trial-wise beliefs 

concerning the cue validity from reaction times and to derive a subject-specific belief 

updating parameter ω in each task version. We also manipulated task difficulty: participants 

performed an easier version of the task in Experiment 1 and a more difficult version in 

Experiment 2. Results from Experiment 1 suggested a preserved ability of older adults to use 

the three different cues to generate predictions. However, the increased task demands of 

Experiment 2 uncovered a difference in belief updating between the two age groups, 

indicating moderate evidence for a reduction of the ability to update predictions with motor 

intention cues in older adults. These results point at a distinction of attentional and motor 

intentional subsystems, with age-related differences tackling especially the motor-intentional 

subsystem.  
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Introduction 

Predictions concerning upcoming events play an important role in modulating our 

responses. Especially when facing an uncertain and changing environment, our decisions and 

responses depend on one side on the prior beliefs that we created during our past experiences 

in the same or in a similar situation. On the other side, they depend on our ability to flexibly 

adapt to the ever-changing environment (Behrens, Woolrich, Walton, & Rushworth, 2007).  

Previous research has shown that similar mechanisms modulate the deployment of 

attention (Vossel, Mathys, Daunizeau, Bauer, Driver, Friston & Stephan, 2014; Vossel, 

Mathys, Stephan, & Friston, 2015). Cueing paradigms, in which a cue predicts the location, a 

particular feature of a target, or the required motor response with a specific probability, are 

particularly useful to investigate the role of predictions for the attentional deployment 

(Posner, 1980; Rushworth, Ellison, & Walsh, 2001; Vossel et al., 2014; Dombert, Kuhns, 

Mengotti, Fink, & Vossel, 2016; Kuhns, Dombert, Mengotti, Fink, & Vossel, 2017). In these 

paradigms, validly cued targets induce faster responses, whereas slower responses are 

observed when predictions are violated, i.e., with invalidly cued targets. Moreover, reaction 

time (RT) differences between valid and invalid trials increase with increasing percentage of 

cue validity (%CV). Previous studies have shown that people are sensitive to changes in 

%CV, even when these changes are not explicitly signaled (Vossel et al., 2014; Dombert et 

al., 2016; Kuhns et al., 2017).  

The present study aimed at investigating age-related differences in flexibly adapting to 

changes of probabilities (cue validity) in a volatile environment in different cognitive 

subsystems. We used three distinct cueing versions to isolate the processes involved in spatial 

attention, feature-based attention, and motor intention, and two different levels of task 

difficulty. These three attentional and motor intentional subsystems have been previously 

investigated in healthy young participants using functional MRI (fMRI; Dombert et al., 2016; 
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Kuhns et al., 2017) showing both common and differential neural correlates. However, these 

subsystems have never been directly compared in older adults.  

Unsignaled changes in the %CV occurred during the experiments, creating a volatile 

environment. In volatile environments, when the %CV is changing unpredictably over time, 

people tend to infer cue validity from observations in past trials and this probabilistic 

inference process can be described using formal computational models such as the 

Hierarchical Gaussian Filter (Mathys, Daunizeau, Friston, & Stephan, 2011). This hierarchical 

Bayesian learning model provides formal rules on how probability estimates (here, of the 

probability that the cue will be valid in a given trial) are updated on a trial-by-trial basis after 

each new observation (trial). These update equations bear similarity to simpler reinforcement 

learning rules, where the updating of probabilities after new observations is affected by a 

prediction error term (i.e., the difference between the observed and predicted outcome) which 

is weighted by a learning rate. The learning rate thus determines how much the prediction 

error influences the updating of the probability estimate. A crucial difference between such 

models and the Bayesian model employed in the present study is that the learning rate in the 

latter model is not constant throughout the experiment. Instead, the learning rate changes over 

time depending on the next higher level in the hierarchy. In our specific case, trial-wise 

beliefs about the probability that the cue will be valid are influenced by higher-level beliefs 

about how fast this probability changes, or – in other words – how stable or volatile the 

environment is perceived. Accordingly, the participant’s belief that the environment is highly 

volatile increases the updating about the probability of an outcome, whereas the updating is 

decreased with the belief that the environment is stable. It has been shown repeatedly that 

such volatility-based learning models outperform models with a fixed learning rate when 

probabilistic contexts change during the experiment (e.g., Behrens et al., 2007; Iglesias et al., 

2013; Jiang, Beck, Heller, & Egner, 2015). In addition to this volatility-dependent hierarchical 

coupling in the Bayesian learning model, the trial-wise updates of beliefs about cue validity 
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and environmental volatility are affected by subject- and session-specific parameters which 

are estimated from the subject’s observable responses.  

In the present study, the Hierarchical Gaussian Filter (Mathys, Daunizeau, Friston, & 

Stephan, 2011) was applied to estimate trial-wise predictions about cue validity based on 

individual RTs and to deduct and compare subject-specific updating parameters. 

Previous evidence suggests that older adults might show difficulties in reward-based 

learning when reward information is uncertain. However, they do not show the same level of 

impairment when the reward contingencies are entirely predictable, suggesting difficulties in 

dealing with probabilistic outcomes (for a review see Eppinger, Haemmerer, & Li, 2011). 

Along the same line, recent evidence points towards a reduced ability of older adults to use 

uncertainty to guide learning in a reward-based predictive inference task (Nassar et al., 2016). 

In Nassar et al.’s study, the participants had to estimate the location of a reward in a computer 

game in which a helicopter (non-visible to the participants for most of the trials) would drop 

bags of coins at different locations in every trial. The participants had to infer the position of 

the helicopter based on the position of the dropped bags on a trial-by-trial basis. The bags 

would drop in slightly different locations distributed around a mean determined by the 

helicopter position. The helicopter remained in the same location for most of the trials. 

However, in some trials it would abruptly change location. Therefore, participants’ learning, 

estimated through computational modeling, would depend both on the trial-by-trial 

uncertainty concerning the precise position of the helicopter, and on the probability of 

change-points (trials in which the position of the helicopter would change abruptly).  

To draw a parallel with the cueing paradigms used in the present study, the uncertainty 

described in Nassar et al.’s study can be considered analogous to the trial-by-trial estimates of 

the %CV, whereas the probability of change-points can be considered analogous to the 

changes in the %CV that determine the volatility of the environment. From these findings, we 

can hypothesize that the speed of updating concerning the trial-by-trial estimates of the %CV 
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will be reduced in older adults. However, given the fMRI findings of differential neural 

systems for updating in different attentional and motor intentional tasks (Dombert et al., 2016; 

Kuhns et al., 2017), it is also probable that such a reduction is not equally observed for the 

different cognitive systems.    

 

Experiment 1 

Materials and Methods  

Participants 

Initially, twenty-two older and twenty-two younger volunteers participated in the 

current study. Inclusion criteria were an age of 18-30 years for the younger group and of 50-

75 years for the older group. All participants were right-handed, as assessed by the Edinburgh 

Handedness Inventory (Oldfield, 1971), had a normal or corrected-to-normal vision and no 

history of neurological or psychiatric disorders. The group of older participants underwent the 

Mini-Mental State Examination (MMSE) to rule out general cognitive deficits (inclusion 

criterion: score ≥29; Folstein, Folstein, & McHugh, 1975). Two participants in each group 

had to be excluded from further analyses since the error rate in the experimental tasks 

deviated more than two standard deviations from the group mean (younger adults: one 

participant showed a mean error rate of 23% in the feature-based attention task, and the other 

participant of 20.5% in the motor task and 27.5% in the spatial attention task; older adults: 

one participant showed a mean error rate of 17% in the motor task, and one participant 

showed a mean error rate of 13.5% in the feature-based attention task). Hence, the final 

sample consisted of 20 older (9 females; age: 59 ± 6.8 (±SD) years; age range 50-71 years) 

and 20 younger participants (10 females; age: 23 ± 3.3 (±SD) years; age range 18-30 years). 

All participants gave written informed consent before participation. The study had been 

approved by the local ethics committee and was performed following the Code of Ethics of 

the World Medical Association (Declaration of Helsinki).  
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Stimuli and experimental paradigm 

Three different cueing tasks (adapted from Dombert et al., 2016 and Kuhns et al., 2017) 

were presented consecutively on a laptop (resolution 1024 x 768, 60 Hz sampling rate) at a 

viewing distance of 52 cm.  

At the beginning of each trial, the cue stimulus was shown for 800 ms. The cues in the 

three task versions contained either spatial or feature information about the upcoming target, 

or were preparatory for a motor response. In the spatial attention version, an arrowhead 

presented at the central fixation diamond pointed to the left or right side of the display, 

thereby indicating the most likely target location (Figure 1A). In the feature-based attention 

task, feature cues provided information about the most likely color of the target. These cues 

consisted of two-letter abbreviation of the color word in the center of the fixation diamond 

(‘BL’ or ‘RO’; [i.e. ‘BL’, ‘RE’, in German, respectively) (Figure 1A). This cue has been 

shown to elicit most effective cueing effects when compared to the presentation of the 

physical color or the whole color word (Dombert, Fink, & Vossel, 2016). Finally, in the motor 

intention task, the cue illustrated the two response buttons within the fixation diamond, with 

one being white and the other one being grey. Participants were asked to prepare the motor 

response corresponding to the white button, cueing either the right index or middle finger in 

preparation towards the upcoming target (Figure 1A).  

After a 1000 ms stimulus onset asynchrony, the target display appeared for 1000 ms, 

consisting of one target stimulus, an upward or downward triangle located either on the left or 

right side of the fixation diamond (4.1° eccentric in each visual field, see Figure 1B), and a 

distractor stimulus (a diamond, located on the opposite side). When the distractor was red, the 

target was blue, and vice versa. Participants were asked to respond to upward or downward 

triangles by button presses with two different response buttons for their right index and 

middle finger. The response mapping (upward/downward triangle - index/middle finger) was 
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counterbalanced between participants. Participants were instructed to maintain central fixation 

and to respond as fast as possible to the target.  

 

 

- insert Figure 1 here - 

Figure 1. Experimental paradigm of Experiments 1 and 2. A. Three different cue stimuli 

were used for guiding spatial attention, feature-based attention, and motor intention. The 

spatial cue guided the attention towards one hemifield of the search display, whereas the 

feature cue was informative about the target color (RO for ´red` and BL for ´blue`). Motor 

responses were indicated by the salient white button cueing for index or middle finger 

response. B. Timeline of a valid trial for the spatial attention task in Experiment 1. C. 

Timeline of a valid trial for the spatial attention task in Experiment 2. 

 

We counterbalanced the order in which the three different cueing tasks testing spatial 

attention, feature-based attention, or motor intention were administered across participants. In 
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each cueing task, the proportion of valid and invalid trials determining the validity of the cue 

information (%CV; i.e., the probability that the cue is valid) changed over the course of the 

experiment between levels of 50% and 80% (Figure 2B). Participants were informed about 

possible changes in %CV, but not about when they would occur or how high the %CV would 

be. A total of 200 trials per cueing version were shown, with alternating %CV blocks, each 

block consisting of 40 trials (Figure 2B). The position of the target, as well as its color, was 

counterbalanced across the cueing conditions and the %CV blocks. Following standard 

procedures in computational studies of trial-wise inference, target stimuli and trial sequence 

were identical between cueing versions. Halfway through each version, a one-minute break 

was introduced by displaying the word “Pause”. A practice session preceded each task of the 

experiment so that participants could get used to the fixation, manual response, and cueing 

conditions. The practice consisted of two separate, short runs; one run with a constant 80 

%CV followed by a second run with changes in %CV. The total duration of the experiment 

(three runs with practice in between) amounted to approximately 70 minutes.  

 

Behavioral data analysis 

In a first step, we investigated the differences in general performance between the two 

age groups in the three different cueing tasks. We calculated each subject’s mean RT for 

correct trials across all cueing and %CV conditions and discarded responses deviating more 

than two standard deviations from the overall individual mean. Mean RT for each subject in 

each task version entered a 3 × 2 ANOVA with the within-subject factor Task (spatial 

attention/feature-based attention/motor intention) and Age (younger/older) as the between-

subject factor. We performed a similar ANOVA on accuracy (% correct responses).  

Moreover, we tested whether the participants showed general differences in cueing 

effects in the different versions of the task and between the two age groups. To account for 

the generally slower responses in older participants revealed by the first ANOVA, we 
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calculated normalized cueing effects by dividing the difference between valid and invalid RT 

by mean overall RT. These normalized cueing effects were analyzed with a 3 (Task: spatial 

attention/feature attention/motor intention) × 2 (Age: younger/older) ANOVA. Besides, the 

normalized cueing effects were tested against zero with one-sample t-tests to ensure that the 

subjects paid attention to the cues. Results of the ANOVAs are reported after Greenhouse-

Geisser correction at a significance level of p < 0.05. Post-hoc t-tests (with Bonferroni 

correction) were computed to interpret the significant effects when appropriate. Traditional 

frequentist analyses were integrated with their Bayesian counterparts computed in JASP 

(version 0.9.0.1), and Bayes factors (BF) are reported (BF10 for all comparisons and BF01 in 

those with BF10 <3). The Bayes factor BF10 reflects the evidence for H1 (i.e., the data from the 

two conditions/groups are different) compared with H0 (i.e., the data from the two 

conditions/groups are not different). BF01 reflects the evidence in favor of the alternative 

hypothesis H0. BF >3, >10, and >30 indicate moderate, strong, or very strong evidence for a 

difference, respectively. BF >1 but <3 indicate anecdotal evidence and BF = 1 indicates no 

evidence in favor of one of the two hypotheses or, in other words, that H1 and H0 are equally 

likely (Wagenmakers et al., 2018).  

In addition, we used G*Power (http://www.gpower.hhu.de, Faul et al., 2007) to estimate 

the achieved power with a post-hoc analysis, based on the effect sizes of two previous studies 

investigating age differences during reward learning (Eppinger, Heekeren, & Li, 2015) and 

goal-directed spatial attention (Twedell, Koutstaal, & Jiang, 2017). 

 

Bayesian modeling of trial-wise belief updating  

To investigate age-related differences in belief updating under uncertainty during spatial 

attention, feature-based attention, and motor intention, a Bayesian hierarchical learning model 

was applied, estimating the individual trial-wise beliefs about cue validity (Mathys et al., 

2011; Vossel et al., 2014). Single-trial RTs of each participant were used to derive learning 
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parameters for each task. Since the general speed of responding differed between the two age 

groups, these analyses were based on normalized RTs (i.e., RT divided by overall mean RT). 

The model, applied separately in each participant to the three tasks, incorporates a 

perceptual and a response model (Figure 2A). While the perceptual model describes trial-wise 

updating of probability estimates based on the cue-target outcomes (observations), the 

response model is used to derive responses (i.e., RTs) based on these beliefs. For a more into 

depth description of the model, please refer to Mathys et al. (2011). In what follows, we 

describe the model parameters as relevant for the present study. 

 

 



12	
	

Figure 2. Illustration of the Bayesian hierarchical model for belief updating and 

example of the model output. A. The perceptual model (shown on the dark grey 

background) incorporates the three states (x1, x2, x3). Higher levels are influenced by constant 

parameters ω and ϑ, which affect trial-wise changes on the respective level. Whereas the 

variables shown in diamonds and hexagons are quantities evolving with time (trials), circled 

variables are constants. Additionally, the quantities in the hexagons rely upon their previous 

states in a Markovian fashion. B. Percentage of cue validity (%CV) was manipulated over the 

course of the experiments, alternating between 80 and 50% (grey line). Here, trial-by-trial 

changes in 𝜇!
(!) (i.e., the subject’s belief that the cue is valid) over the course of 200 trials is 

shown. For this graph 𝜇!
(!)was calculated for one subject to exemplify the model.  

 

 The perceptual model comprises three states denoted by x. The state 𝑥!
!  at level 1 

represents the environmental state of each trial t, which, in the present paradigm, consisted of 

either a validly or invalidly cued target (with 𝑥!
!

 = 1 for valid and 𝑥!
!  = 0 for invalid trials). 

The distribution of the probability of a trial being valid (i.e., 𝑥!
!  = 1) is a Bernoulli 

distribution governed by the next higher state 𝑥!
! .  𝑥!

!  changes from trial to trial as a 

Gaussian random walk. How fast 𝑥!
!  changes after new observations is determined by two 

quantities: 𝑥!
!  (the state of the next upper level of the hierarchy) and a subject-specific 

updating parameter ω. The third state 𝑥!
!  also changes as a Gaussian random walk, with the 

step size of the random walk being determined by a second fixed subject-specific parameter 

𝜗. Thereby, levels 2 and 3 of the model are hierarchically coupled Gaussian random walks 

that enable the flexible control of belief updating about cue validity in each trial in relation to 

beliefs about volatility (and subject-specific parameters). The subject-specific parameter ω 

determines the step-size of the random walk at the second level of the model, or in other 
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words, the speed of the belief updating about cue validity from trial-to-trial. 𝜗 determines the 

speed of the updating about the stability of cue validity (i.e., volatility, the third level of the 

model). 

To infer the subject-specific beliefs about trial-by-trial cue validity and volatility from 

observable behavior (RTs), the perceptual model needs to be inverted; this yields the posterior 

densities of the hidden states 𝑥(!). In the following, the sufficient statistics of the subject’s 

posterior belief are denoted by 𝜇(!) (mean), 𝜎(!) (variance), and 𝜋(!) = !
!(!)

  (precision). As 

described in detail in Mathys et al. (2011), variational model inversion under a mean field 

approximation yields simple analytical update equations – where belief updating rests on 

weighted prediction errors. In this experiment, they provide us with the subject’s estimate of 

the probability that the target appears at the cued location, the target color matches the cue, or 

that the target requires the cued motor response in a particular trial (note that this is an 

individualized approximate Bayes-optimality, in reference to the subject-specific values for 

the updating parameters ω and 𝜗). 

How the hidden beliefs translate into observable behavior (RTs) is expressed in the 

response model. In previous work (Dombert et al., 2016; Kuhns et al., 2017), a response 

model in which RTs were directly governed by the estimated cue validity before the 

observation of the trial outcome 𝜇!
(!) described the data most plausibly and this response 

model was also applied in the present experiments. Here, it is assumed that the RT in a given 

trial is a linear function of the estimated probability that the cue will be valid 𝜇!
(!). 𝜇!

(!) is 

derived from a sigmoid transformation of the value of 𝜇!
(!!!) from the previous trial. In valid 

trials, a high probability estimate results in faster responses, while the opposite effect (slower 

responses with higher cue validity estimates) should occur in invalid trials. Two response 

model parameters ζ1 and ζ2 parameterize the intercept and the slope of the linear function for 

valid and invalid trials, respectively: 
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𝑅𝑇(!) =
ζ1v − ζ2v𝜇!

(!)        for 𝑥!
! =1 (i.e. valid trial)

 ζ1i+ ζ2i𝜇!
(!)  for 𝑥!

(!)=0 (i.e. invalid trial)
 

 

The subject-specific parameters of the perceptual model (ω and ϑ) and the response 

model on the basis of trial-wise RT were estimated using a variational Bayesian estimation, as 

implemented in the HGF toolbox (http://www.translationalneuromodeling.org/tapas/) running 

on MATLAB® (2012b, The MathWorks, Inc., Natick, Massachusetts, United States). 

Variational Bayes is an iterative scheme, which can be regarded as an extension of the 

expectation-maximization algorithm yielding approximate posterior probability densities over 

the model parameters.  

Of primary relevance for the present study were the model parameters ω and ϑ of the 

perceptual model, since they influence the learning about cue validity and volatility. For 

completeness, we also report the estimated response model parameters in the Supplementary 

materials and analyzed the ζ2 parameter in relation to task and group effects. ζ2 is a potentially 

interesting parameter, since it quantifies how much RTs change with changes in the estimated 

cue validity. ζ1 just determines the absolute level of RTs and was not analyzed any further.  

Besides these estimates of the free model parameters, variational Bayes yields estimates 

of the (negative) free-energy F as a lower bound on the log-model evidence, a measure that 

takes into account model accuracy and complexity (Friston et al., 2007). While the absolute 

level of the log-model evidence is not very meaningful, the values can be used to compare 

alternative models of the same data: the relative differences between log evidence values of 

different models of the same data (summed over individual subjects in a fixed-effects 

approach; Stephan et al., 2009) can be expressed as (log) Bayes factors (BF) and posterior 

probabilities (PP) of the model given the observed data. To this end, we compared model 

evidence for the hierarchical Bayesian learning model in each task and group to an alternative 
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model in which RTs were governed by a constant level of cue predictability (estimated from 

the data) so that no learning of the changing cue predictability levels occurred.  

 

Results 

Behavioral data 

An overview of mean RTs and accuracy in the three versions of the cueing tasks for 

each age group is given in Table 1. 

 

Table 1. Behavioral data for Experiment 1. Mean RTs (± SEM) and mean accuracy (± 

SEM), for spatial attention, feature-based attention, and motor intention, separately for 

younger and older adults.  

  

Task 

Mean RT (ms) Accuracy (%) 

Younger Older Younger Older 

Spatial attention 
507  
(±16) 

655 
(±19) 

97.6  
(±0.3) 

98.3  
(±0.3) 

Feature-based attention  
502  
(±17) 

648 
(±16) 

96.5  
(±0.5) 

98.0  
(±0.3) 

Motor intention 
486  
(±18) 

607 
(±16) 

96.0  
(±0.5) 

98.0  
(±0.4) 
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The ANOVA on accuracy with the within-subject factor Task (feature-based 

attention/spatial attention/motor intention) and the between-subject factor Age (younger/older) 

yielded a main effect of Task (F(1.8,68.1) = 5.91, p = 0.006, ηp
2 = 0.13; BF10 = 7.2 compared to 

the null model). Post-hoc paired samples t-tests (Bonferroni corrected threshold: p = 0.017) 

comparing the tasks revealed better performance in the spatial attention task (97.9 ± 0.2%; 

mean ± SEM) compared to the motor intention task (97 ± 0.36%; t(39) = -2.92, p = 0.006; BF10 

= 6.6) and compared to the feature-based attention task (97.3 ± 0.34%; t(39) = -2.89, p = 0.006; 

BF10 = 6.1). The performance in the motor task and the feature-based attention task did not 

differ (t(39) = -0.88, p = 0.38; BF01 = 4.1). The main effect of the between-subject factor Age 

was significant (F(1,38) = 7.96, p = 0.008, ηp
2 = 0.17; BF10 = 6.2 compared to the null model), 

indicating higher accuracy for older than younger participants (98 ± 0.35% vs. 97 ± 0.35%). 

The interaction Age × Task was not significant (F(1.8,68.1) = 2.4, p = 0.1, ηp
2 = 0.06; BF01 = 1.6 

compared to the model including the two main effects). 

The ANOVA on individual mean RT (across all conditions) revealed a significant main 

effect of Task (F(1.9,72.9) = 9.74, p = 0.0002, ηp
2 = 0.2; BF10 = 124 compared to the null model). 

Post-hoc paired samples t-tests (Bonferroni corrected threshold: p = 0.017) comparing the 

tasks revealed significantly faster RTs in the motor intention task (546 ± 15 ms; mean ± SEM) 

as compared to the spatial attention (581 ± 17 ms; t(39) = -4.4, p = 0.00007; BF10 = 343) and 

the feature-based attention task (575 ± 16 ms; t(39) = 3.18, p = 0.003; BF10 = 11.9). The mean 

RT in the feature-based attention task and the spatial attention task did not differ (t(39) = -0.88, 

p = 0.38; BF01 = 4.8). Additionally, the between-subject factor Age was significant (F(1,38) = 

39.67, p = 0.0000002, ηp
2 = 0.5; BF10 = 44291 compared to the null model), indicating 

generally slower RTs for the older participants (636 ± 15 ms vs. 498 ± 15 ms). The interaction 

Age × Task was not significant (F(1.9,72.9) = 1.58, p = 0.21, ηp
2 = 0.04; BF01 = 2.4 compared to 

the model including the two main effects). 
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The ANOVA on normalized cueing effects yielded no significant main effect of Task 

(F(2,75.3) = 1.35, p = 0.27, ηp
2 = 0.03; BF01 = 3.9 compared to the null model) or Age (F(1,38) = 

0.21, p = 0.65, ηp
2 = 0.006; BF01 = 3.3 compared to the null model), nor an interaction 

between Task × Age (F(2,75.3) = 0.34, p = 0.71, ηp
2 = 0.01; BF01 = 5.7 compared to the model 

including the two main effects). We additionally performed one-sample t-test against zero to 

investigate whether younger and older adults show significant cueing effects in all task 

versions. Indeed, all t-tests were significant (all ps < 0.005), showing that both age groups 

were using the cues during the three tasks versions. 

The main focus of our study was the assessment of trial-wise inference on cue validity 

using Bayesian modeling. For this reason, we analyzed the task- and subject-specific 

parameters ω and 𝜗 which determine the speed of the trial-wise updating of the belief that the 

cue will be valid (ω) and the belief about the volatility of cue validity (𝜗). The ANOVA with 

the within-subject factor Task (feature-based attention/spatial attention/motor intention) and 

the between-subject factor Age (younger/older) on the updating parameter ω did not reveal 

any significant main effect (Task: F(2,75.1) = 0.25, p = 0.78, ηp
2 = 0.007; BF01 = 10 compared to 

the null model; Age: F(1,38) = 3.3, p = 0.08, ηp
2 = 0.08; BF01 = 1.6 compared to the null model) 

or interaction (Task × Age: F(2,75.1) = 0.06, p = 0.94; ηp
2 = 0.002; BF01 = 7.1 compared to the 

model including the two main effects). The ANOVA on the parameter 𝜗 quantifying updating 

about volatility did also not reveal any significant main effect (Task: F(1,38.3) = 1.28, p = 0.27, 

ηp
2 = 0.03; BF01 = 3.8 compared to the null model; Age: F(1,38) = 0.73, p = 0.4, ηp

2 = 0.02; BF01 

= 3.4 compared to the null model) or interaction (Task × Age: F(1,38.3) = 0.87, p = 0.36, ηp
2 = 

0.02; BF01 = 3.6 compared to the model including the two main effects). The descriptive data 

of the response model parameters and the results of frequentists and Bayesian ANOVAs on 

the parameter 𝜁! are shown in the Supplementary Materials (Table S1 and S1). 
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To further investigate the relationship between age and model-based updating 

parameters in the group of older adults, we performed correlations between age and values of 

parameters ω and 𝜗 in the three versions of the tasks in this group of participants. We found a 

trend towards significance for a negative correlation between age and ω in the feature-based 

attention task (r = -0.47, p = 0.037; BF01 = 0.47), suggesting that the values of ω tended to be 

more negative – indicating slower updating – with higher age. No other significant results 

were found (ps > 0.5). When considering the parameter 𝜗, no significant correlations with age 

were found (ps > 0.2).   

Figure 3 shows observed RT costs in relation to predicted RTs costs for different values 

of estimated cue validity 𝜇!
(!) (binned in higher or lower/equal to 0.7).   
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Figure 3. Observed and predicted pattern of RT costs from the Bayesian hierarchical 

model in Experiment 1.  RT costs were calculated by subtracting normalized RTs of invalid 

trials from valid trials, and they are shown in relation to the participants’ trial-by-trial estimate 

of the cue predictability 𝜇!
(!)for all three tasks versions and the two age groups, binned in cue 

validity higher or lower/equal to 0.7. Error bars indicate SEM. 

 

Formal model comparison between the Bayesian learning model and an alternative 

model without learning of the changing cue predictability levels yielded strong evidence in 

favor of the Bayesian model for all but one model comparison (younger adults: feature-based 

attention: BF = 13.78, PP = 1.0; motor intention: BF = 2.61, PP = 0.93; spatial attention: BF = 
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27.44, PP = 1.0; older adults: feature-based attention: BF = 13.56, PP = 1.0; motor intention: 

BF = 20.77, PP = 1.0; spatial attention: BF = 29.70, PP = 1.0). 

Post-hoc power analyses performed on the effect sizes of the age × condition interaction 

of two independent studies resulted in a power of 99% (ηp
2 = 0.24, Eppinger et al., 2015) and 

98% (ηp
2 = 0.21, Twedell et al., 2017). 

 

Discussion 

The first experiment was designed to explore putative age-related differences in the 

ability to use trial-by-trial observations to estimate the cue validity, i.e., to update predictions 

concerning upcoming stimuli. In addition, we tested whether the attentional deployment and 

the updating behavior differed between three different versions of the cueing paradigm, 

namely the spatial attention, the feature-based attention, and the motor intention tasks.  

  We found no evidence of age-related differences in belief updating abilities. None of 

the learning parameters from the Bayesian learning model analyzed showed group differences 

between older and younger participants. There was also no evidence of differences in 

updating between the three different tasks. As for the attentional deployment, measured from 

the normalized cueing effects, we again did not find any age-related differences, nor 

differences in the different tasks. In contrast, we observed age-related differences in the 

general performance, with older participants being more accurate but slower in reacting than 

the younger participants, indicating a speed-accuracy trade-off. Also, we found a higher 

accuracy for the spatial task, compared with the feature-based and the motor intention tasks, 

and faster RTs for the motor intention task, compared with the spatial and the feature-based 

tasks. Although the reaction to the target involves motor preparation across conditions, the 

motor-intentional cue allows building a representation of the movement at an earlier stage, 

and this might explain these RT differences. 

 



21	
	

Experiment 2 

The results of Experiment 1 revealed comparable abilities to infer cue validity in older and 

younger adults across different cueing conditions in a simple task setting. Besides, older 

adults were more accurate (although slower) than younger adults, indicating that they used a 

more conservative strategy to perform the task. Also, the presence of the speed-accuracy 

trade-off in older adults might complicate the interpretation of modeling results, based only 

on the trial-by-trial pattern of RTs. 

When investigating age-related differences, it is essential that the tasks engage the cognitive 

resources of the participants. If the tasks are too easy, this might conceal age-related 

differences by not fully engaging participants’ capacities. Therefore, Experiment 2 employed 

more difficult versions of the cueing tasks to investigate whether increased task difficulty may 

uncover age-related decline in belief updating in any of the three attentional-intentional 

domains. These versions were more similar to the ones used in previous neuroimaging studies 

with younger participants (Dombert et al., 2016; Kuhns et al., 2017).  

We exacerbated the task by shortening the cue and target appearance time, as well as 

the time window to respond to the target. In addition, the target stimuli and search display 

were made more complex, the latter by adding two distractor stimuli.  

 

Materials and Methods  

Participants 

Twenty-one older and twenty-two younger participants, who had not participated in 

Experiment 1, participated in Experiment 2. Two participants from the young age group and 

one subject in the older group had to be excluded due to a error rate in the experimental tasks 

that deviated more than two standard deviations from the group mean (younger adults: one 

participant showed a mean error rate of 26% in the feature-based attention task and of 40% in 

the motor task, and the other participant showed a mean error rate of 51.5% in the motor task; 
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older adults: one participant showed a mean error rate of 58.5% in the feature-based attention 

task and of 48% in the spatial attention task). Therefore, the final sample comprised twenty 

older participants (10 females; age: 61 ± 8.2 (SD) years; age range 50-77 years) and twenty 

younger participants (10 females; age: 26 ± 3.3 (SD) years; age range 19-30 years). The group 

of younger adults in Experiment 2 differed from the one of Experiment 1 by age (t(38) = -

2.13, p = 0.04), with  participants of the younger group being slightly younger in Experiment 

1 than in Experiment 2 (23.4 ± 0.75 vs. 25.7 ± 0.75 years; mean ± SEM). No differences in 

age were found between older participants in Experiment 1 and Experiment 2 (59 ± 1.5 vs. 

61.4 ± 1.8 years; t(38) = -1.02, p = 0.31). The inclusion criteria matched those of Experiment 

1.  

 

Stimuli and experimental paradigm 

Experiment 2 used the same cue stimuli for the three task versions and manual 

responses towards target stimuli as Experiment 1. However, the cue and target presentation 

were shortened to 400 ms and 500 ms, respectively, and the intertrial interval was reduced 

(1200 ms vs. 2000 ms in Experiment 1) (see Figure 1C). The complexity of the search display 

was increased, containing three distractor diamonds and one target diamond peripherally 

arranged in the corners of an imaginary rectangle centered on the fixation diamond (4.1° 

eccentric in each visual field). The target diamond had a missing corner in its upper or lower 

half and participants were asked to indicate which corner was missing. The response mapping 

was counterbalanced across participants. Each hemifield always contained one red and one 

blue diamond with counterbalanced positions across %CV blocks and valid and invalid trials, 

resulting in an equal number of diagonally and horizontally arranged trials. All other aspects 

of the task including the trial sequence and %CV manipulation were kept constant with regard 

to Experiment 1. 
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Behavioral data analysis and Bayesian modeling  

The same analyses as in Experiment 1 were performed.  

 

Eye movement recording and analysis 

Previous evidence showed that age correlates with increased difficulty in voluntary 

saccade control (Peltsch, Hemraj, Garcia, & Munoz, 2011). Since we introduced additional 

distractor stimuli to make the task more complex, eye movements were recorded to control for 

fixation ability. An EyeLink® 1000 MR-compatible eye-tracker system (SR Research Ltd.) 

was employed at a sampling rate of 500 Hz. A 9-or 5 point calibration was performed, 

followed by a validation to ensure that errors were <1°. Data were processed using the ILAB 

toolbox (Gitelman, 2002) in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United 

States). The time between cue and target onset was analyzed for the amount of time spent in a 

predetermined fixation zone of 1.5° around the central fixation diamond. Consequently, the 

percentage of fixation time within the central ROI was compared using independent samples 

t-tests for each task, between the age groups.  

 

Results 

Behavioral data 

Table 2 provides the mean RTs and accuracy in the three experimental conditions for 

each age group. 

 

Table 2. Behavioral data for Experiment 2. Mean RTs (± SEM) and mean accuracy (± 

SEM), for spatial attention, feature-based attention, and motor intention, separately for 

younger and older adults.  

Task Mean RT (ms) Accuracy (%) 
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The 3 (Task: feature-based attention/spatial attention/motor intention) × 2 (Age: 

younger/older) ANOVA on accuracy revealed a significant main effect of Age (F(1,38) =12.1, p 

= 0.001, ηp
2 = 0.24; BF10 = 19.6 compared to the null model). In contrast with the results of 

Experiment 1, the younger participants were more accurate than the older participants in 

Experiment 2 (93 ± 1.7 % vs. 84 ± 1.7 %). Neither a main effect of Task (F(1.9,71.6) = 0.52, p = 

0.59, ηp
2 = 0.01; BF01 = 7.8 compared to the null model) nor a significant Task × Age 

interaction were found (F(1.9,71.6) = 0.18, p = 0.82, ηp
2 = 0.005; BF01 = 7.1 compared to the 

model including the two main effects).  

The same ANOVA on mean RTs revealed a significant main effect of Task (F(1.77,67.4) = 

8.75, p = 0.0007, ηp
2 = 0.19; BF10 = 45 compared to the null model). Post-hoc paired samples 

t-tests (Bonferroni corrected threshold: p = 0.017) comparing the tasks revealed that RTs in 

the motor intention task (703 ± 22 ms) were significantly faster than in the spatial attention 

task (736 ± 20 ms; t(39) = -3.8, p = 0.001; BF10 = 55) and in the feature-based attention task 

(738 ± 20 ms; t(39) = 3.6, p = 0.001; BF10 = 32). There was no difference in mean RTs between 

the spatial attention task and the feature-based attention task (t(39) = 0.22, p = 0.83; BF01 = 

5.7). A main effect of Age (F(1,38) = 32.5, p = 0.000001, ηp
2 = 0.46; BF10 = 6733 compared to 

the null model) was found, with slower RTs for older compared with younger participants 

(812 ± 21 ms vs. 639 ± 21 ms). In addition, the Task × Age interaction (F(1.77,67.4) = 3.97, p = 

0.028, ηp
2 = 0.1; BF01 = 0.44 compared to the model including the two main effects) was 

Younger Older Younger Older 

Spatial attention 
662 
(±21) 

809 
(±26) 

93.4 
(±0.5) 

84.8 
(±2.7) 

Feature-based attention 
653 
(±22) 

824 
(±22) 

93.0 
(±1.1) 

84.4 
(±2.3) 

Motor intention 
603 
(±22) 

803 
(±23) 

92.2 
(±1.0) 

84.4 
(±2.2) 
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significant. Post-hoc independent samples t-tests (Bonferroni corrected threshold: p = 0.017) 

comparing tasks between the age groups indicated that younger participants were significantly 

faster in all tasks (feature-based attention: t(38) = -5.55, p = 0.000002, BF10 = 5808; motor 

intention: t(38) = -6.3, p = 0.0000002, BF10 = 49778; spatial attention: t(38) = -4.3, p = 0.0001, 

BF10 = 218). In order to test for differences between task versions within the two age groups, 

we calculated post-hoc paired samples t-tests (three tests per age group; Bonferroni corrected 

threshold: p = 0.017). Results revealed faster RTs in younger participants for the motor 

intention task (603 ± 22 ms) compared with the spatial attention task (662 ± 21 ms; t(19) = -

4.78, p = 0.0001; BF10 = 221) and with the feature-based attention (653 ± 22 ms; t(19) = 3.34, p 

= 0.003; BF10 = 12). There was no difference between the spatial attention task and the 

feature-based attention task (t(39) = -0.59, p = 0.56; BF01 = 3.7). No differences were found 

between task versions within the group of the older participants.  

The ANOVA on normalized cueing effects yielded no significant main effect of Task 

(F(1.9,73.1) = 0.05, p = 0.95, ηp
2 = 0.001; BF01 = 11.3 compared to the null model), nor a Task × 

Age interaction (F(1.9,73.1) = 0.06, p = 0.93, ηp
2 = 0.002; BF01 = 7 compared to the null model). 

However, there was a significant main effect for Age (F(1,38) = 5.7, p = 0.02, ηp
2 = 0.13; BF01 = 

0.4 compared to the model including the two main effects), with higher normalized cueing 

effects for younger than older adults (0.11 ± 0.01 ms vs. 0.07 ± 0.01 ms). We additionally 

performed one-sample t-test against zero to investigate whether younger and older adults 

show significant cueing effects in all task versions. Indeed, all t-tests were significant (all ps < 

0.005), showing that both age groups were using the cues during the three tasks versions. 

 As in Experiment 1, the subject-specific updating parameter ω was compared in an 

ANOVA with the within-subject factor Task (spatial attention/feature-based attention/motor 

intention) and the between-subject factor Age (younger/older). The main effects of Task 

(F(2,75) = 0.21, p = 0.81, ηp
2 = 0.006; BF01 = 10.5 compared to the null model) and Age (F(1,38) 

= 2.4, p = 0.13, ηp
2 = 0.06; BF01 = 2.15 compared to the null model) were not significant. 
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However, a significant Task × Age interaction (F(2,75) = 4.33, p = 0.017, ηp
2 = 0.1; BF10 = 6.6 

compared to the model including the two main effects) was observed. Post-hoc independent 

samples t-tests (Bonferroni corrected threshold: p = 0.017) showed that the learning parameter 

ω in the motor intention task tended to be reduced in older compared with younger adults (t(38) 

= 2.49, p = 0.019, BF10 = 3.2; see Figure 4). Thus, younger participants tended to be faster 

than the older participants in updating their beliefs about cue validity in the motor intention 

task. No significant differences were found between younger and older adults in the learning 

parameter ω in the spatial attention task (t(38) = -1.6, p = 0.12, BF01 = 1.2) and in the feature-

based attention task (t(38) = 1.6, p = 0.12, BF01 = 1.2). No significant differences were found 

between task versions for each of the two groups.  

          

Figure 4. Results from the Bayesian hierarchical Model in Experiment 2. Between-group 

comparison of the individual updating parameter ω for spatial attention, feature-based 
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attention, and motor intention. Less negative values of ω indicate faster updating. In the motor 

intention task, younger participants are significantly more flexible in their tendency to adapt 

their predictions, as opposed to older adults.  

 

The ANOVA on 𝜗 parameter (updating of volatility) did not reveal any significant main 

effect (Task: F(1.1,43) = 0.77, p = 0.4, ηp
2 = 0.02; BF01 = 6.1 compared to the null model; Age: 

F(1,38) = 0.26, p = 0.61, ηp
2 = 0.007; BF01 = 3.9 compared to the null model) nor a Task × Age 

interaction (F(1.1,43) = 1.34, p = 0.26, ηp
2 = 0.03; BF01 = 0.94 compared to the model including 

the two main effects). The descriptive data of the response model parameters and the results 

of frequentists and Bayesian ANOVAs on the parameter 𝜁! are shown in the Supplementary 

Materials (Table S1 and S2). 

In order to further investigate the relationship between age and model-based updating 

parameters in the group of older adults, we performed correlations between age and values of 

parameters ω and 𝜗 in the three versions of the tasks in this group of participants. We found 

no evidence for correlations between age and learning parameters in the three tasks (ω: ps > 

0.2; 𝜗: ps > 0.6; all BF10 < 1). 

Figure 5 shows observed RTs cost in relation to predicted RTs costs for different values 

of 𝜇!
(!) (binned in higher or lower/equal to 0.7).    
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Figure 5. Observed and predicted pattern of RT costs from the Bayesian 

hierarchical model in Experiment 2.  RT costs were calculated by subtracting normalized 

RTs of invalid trials from valid trials, and they are shown in relation to the participants’ trial-

by-trial estimate of the cue predictability 𝜇!
(!)for all three tasks versions and the two age 

groups, binned in cue validity higher or lower/equal to 0.7. Error bars indicate SEM. 

 

Formal model comparison between the Bayesian learning model and an alternative 

model without learning of the changing cue predictability levels yielded strong evidence in 

favor of the Bayesian model for all model comparisons (younger adults: feature-based 

attention: BF = 80.47, PP = 1.0; motor intention: BF = 21.34, PP = 1.0; spatial attention: BF = 

83.97, PP = 1.0; older adults: feature-based attention: BF = 10.70, PP = 1.0; motor intention: 

BF = 15.38, PP = 1.0; spatial attention: BF = 6.21, PP = 1.0). 
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Eye movement data 

A total of 19 of the 120 datasets (one for each of the three task versions for the younger 

and older adults) had to be discarded from further analysis due to poor tracking quality and 

technical difficulties. Independent samples t-tests on the percentage of fixation time in the 

cue-target period were conducted for each task version, between age groups. In the feature-

based attention task, five datasets of older participants could not be included. Analysis 

showed significantly higher fixation time in younger adults (99 ± 0.3%; mean ± SEM) 

compared to older adults (98 ± 0.2%; (t(33) = 2.6, p = 0.01). In the motor intention task, 

datasets of five younger and four older adults did not enter the analysis. Again, younger 

participants had a significantly better fixation performance (99 ± 0.2%) than the older group 

(98 ± 0.3%; t(29) = 3, p = 0.005). As for the spatial attention task, five datasets from older 

adults had to be discarded. The remaining participants showed no significant differences (t(33) 

= 0.7, p = 0.49) in fixation time (younger: 99 ± 0.4%; older: 98 ± 0.2%). Despite the 

differences between age groups in some of the task versions, mean fixation values showed 

that also older adults were able to keep good fixation during the task. 

 

Discussion 

In Experiment 2, we employed a more difficult version of the cueing paradigm used in 

Experiment 1, with the aim of challenging the participants’ ability to infer the cue validity and 

updating their beliefs in a volatile environment. Age-related differences were found in both 

behavioral performances and the model parameters. Younger participants were faster and 

more accurate in their responses than older participants, suggesting that the difficult version 

of the paradigm challenged more the latter group. This was also reflected in the results of the 

cueing effects, where younger participants showed higher cueing effects than older 

participants, suggesting that the former group was more sensitive to the cue information and 

showed stronger orienting towards the cues. Besides, age-related and task differences where 
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found when analyzing the subject-specific updating parameter ω. More specifically, younger 

participants showed a tendency (or moderate evidence) towards faster belief updating in the 

volatile environment in the motor intention task than older participants. Whereas probabilistic 

inference abilities did not differ with age in Experiment 1, increased task demands in 

Experiment 2 unraveled moderate evidence of a slowing of belief updating with motor 

intention cues for older participants.  

Concerning task differences, similarly to Experiment 1, the motor intention task 

induced faster RTs than the spatial and the feature-based attention tasks. The same pattern 

was found for RTs in the group of the younger participants, whereas no difference in RTs 

between tasks was found for the group of the older participants.  

  

General discussion 

 Using three different versions of a cueing paradigm and two task difficulty levels, we 

investigated age-related changes in the ability to use recent observations and environmental 

cues to infer the probability of upcoming events for an efficient attentional deployment. 

Formal computational modeling with a generic Bayesian learning scheme allowed us to 

characterize individual updating of beliefs concerning the occurrence of upcoming events in a 

volatile environment when different stimulus properties were predicted by spatial, feature, or 

motor cues. The results highlighted a significant interaction between task and age group in the 

more difficult task version (Experiment 2). Post-hoc analyses pointed towards a tendency (or 

moderate evidence) of a reduced ability to update predictions in older participants in the more 

difficult version of the motor intention task, i.e., when the finger required for the response was 

cued.  

Previous fMRI studies (Dombert et al., 2016; Kuhns et al., 2017) used the same three 

versions of the task in healthy young participants and showed that probabilistic inference for 

spatial attention, feature-based attention, and motor intention engages different brain regions. 



31	
	

Results showed that a common node located in the left anterior intraparietal sulcus was 

involved in inferring trial-wise cue validity during spatial and feature-based attention 

(Dombert et al., 2016). However, distinct correlates were found for spatial attention and motor 

intention (Kuhns et al., 2017). Whereas for spatial attention the activity of the right temporo-

parietal junction was modulated by trial-wise estimates of the cue being valid (see also Vossel 

et al., 2015 and Dombert et al., 2016), the same process for motor cues was supported by the 

left angular gyrus and anterior cingulate cortex. The difference in the neural substrates of 

probabilistic inference processing can explain the selective age-related differences in belief 

updating abilities in the motor intention task. Indeed, there is evidence that the functionality 

of the prefrontal cortex is reduced with aging (for a review see Hedden and Gabrieli, 2004), 

and previous studies also point to a decline of anterior cingulate cortex function and volume 

with age (Pardo et al., 2007; Mann et al., 2011). 

Differently from previous findings showing generalized difficulties in older adults 

with reward-based probabilistic learning (Eppinger, Haemmerer, & Li, 2011; Nassar et al., 

2017), the present results yielded moderate evidence of reduced probabilistic belief updating 

in older adults only when motor cues are used to predict the appearance of the target and only 

in the more difficult version of the task. Conversely, no differences were found for the spatial 

attention and feature-based attention tasks. The lack of evidence for a reduction of 

probabilistic belief updating abilities found in our group of older adults in two out of the three 

subsystems investigated could be due to the different nature of the tasks, tackling attentional 

systems and not the reward system. In line with our results, previous studies reported 

preserved cueing effects in older adults for endogenous attention (Tellinghuisen, Zimba, & 

Robin, 1996; Curran, Hills, Patterson, & Strauss, 2001; Tales, Muir, Bayer, & Snowden, 

2002), despite slower latencies for early visual ERP components, i.e., N1 and P1, as well as 

later components such as the P3, in older compared with younger adults (Curran et al., 2001).  
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Using a cueing task with spatial cues predicting the hand needed for the response, 

Sterr and Dean (2008) found an absence of validity effects (difference in RTs between validly 

and invalidly cued responses) in a group of older adults compared with younger participants. 

In addition, they found differences in ERP components, such as the foreperiod contingent 

negative variation and the lateralized readiness potential, between the two age groups 

indicating reduced lateralized motor preparation in the group of older participants. These 

results suggested differences in processing of motor cues with healthy aging, in line with the 

present results. However, in the abovementioned study, no manipulation of the cue 

predictability during the task was performed. It is indeed by manipulating the cue 

predictability over time that allowed us to unveil age-related differences in the updating of 

predictions.  

Some limitations of the present results should be mentioned. The present group of 

older adults included participants below 60 years old (>50 years), possibly constraining our 

results in term of age-related differences that could be detected. Also, the sample size of the 

two groups may only be suited to detect medium-to-strong age-dependent effects. Previous 

studies investigating age × condition interactions during reward learning (Eppinger et al., 

2015) or goal-directed spatial attention (Twedell et al., 2017) reported relatively large effect 

sizes; post-hoc power analyses based on these studies yielded an achieved power of 99% and 

98% for our sample size, respectively. Therefore, it is possible that smaller age-related 

differences might have remained undetected. To overcome this limitation and to help with the 

interpretation of null findings, we provided Bayesian counterparts of traditional frequentist 

analyses. Our interest was focused on exploring age-related differences in the perceptual 

model parameters ω and 𝜗. Whereas for 𝜗 Bayesian analyses indicated evidence against a 

main effect of age, the results were less conclusive for ω, with Bayesian analyses indicating 

no clear evidence against a main effect of age. However, the evidence of an age-related 
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difference for the parameter ω in the motor intention task in Experiment 2 was the strongest, 

suggesting that age-related changes are occurring in the motor intention subsystem. 

In conclusion, by combining the analysis of behavior with a formal computational 

model, the present work provides new insights into age-related changes in the efficiency of 

probabilistic inference in the motor-intentional subsystem as well as into the mechanisms that 

support such inference processes within attentional subsystems. 
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